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By Tony F. Chan 

Abstract. Let A be an n by n matrix which may be singular with a one-dimensional null space, 
and consider the LU-factorization of A. When A is exactly singular, we show conditions under 
which a pivoting strategy will produce a zero n th pivot. When A is not singular, we show 
conditions under which a pivoting strategy will produce an nth pivot that is O(G,,) or 
O(K- (A)), where ,, is the smallest singular value of A and K(A) is the condition number of 
A. These conditions are expressed in terms of the elements of A - in general but reduce to 
conditions on the elements of the singular vectors corresponding to ,, when A is nearly or 
exactly singular. They can be used to build a 2-pass factorization algorithm which is 
guaranteed to produce a small n th pivot for nearly singular matrices. As an example, we 
exhibit an LU-factorization of the n by n upper triangular matrix 

1-1 -I1 -I1 

T= 
0 

n-2)~ ~ ~ ~~- I _ 

that has an nth pivot equal to 2-- 

1. Introduction. The LU-factorization PAQ = LU (in this paper, P and Q always 
denote permutation matrices, L is always unit lower triangular and U upper 
triangular) of a general m by n matrix A plays an important role in computational 
linear algebra. It always exists and can be found efficiently by Gaussian Elimination 
or its variants. On the other hand, there may be many LU-factorizations for a given 
matrix. However, the LU-factorization is unique once the permutations P and Q are 
fixed. In this paper, we shall be concerned only with square n by n matrices, with 
primary interest on the nearly singular case. Specifically, we shall assume that A has 
one eigenvalue that is small with respect to the others and that the associated 
eigenspace is one-dimensional. When A is exactly singular, then any LU-factoriza- 
tion of A has a zero on the diagonal of U (i.e., a zero pivot). However, when A is 
nearly singular, it is well known that U may not have any small diagonal elements. 
Note that the diagonal elements of U are the eigenvalues of U. Golub and Wilkinson 
[10] showed that the smallest eigenvalue An of any matrix can be bounded in terms 
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of the singular values al as follows: 

|XAnl < (I( Jn ) 
n 

and this bound is the best possible in general. Thus, although (un/ll) may be small, 
X,7 may not be. In fact, a well-known example is the matrix T defined earlier. For 
large n, T is nearly singular, and both the partial and complete pivoting strategies 
will produce T as the U matrix in the LU-factorization of T. Obviously, there are no 
small elements on the diagonal of T. 

In this paper, we show that, for any square matrix A, there always exists an 
LU-factorization with a 'small' element in the last position on the diagonal of U. 
Here 'small' means un,n = O(K-i'(A)) or O(un), where K(A) is the condition number 
of A in some norm, and an is the smallest singular value of A. (We shall use upper 
case letters for denoting matrices and the corresponding lower case with subscripts 
for denoting elements of matrices.) Thus, we can always find an LU-factorization with 
a un17n that is as small as A is nearly singular. For a given matrix, there may be many 
such LU-factorizations. We show conditions on A which show how many of these 
factorizations are possible. These conditions are expressed in terms of the elements 
of A-' in general and reduce to conditions on the elements of the singular vectors 
corresponding to an when A is nearly or exactly singular. These conditions also show 
that matrices which are nearly singular but which the commonly used pivoting 
strategies do not produce a small un n all have a very special pattern to their inverses 
and their smallest singular vectors. Moreover, simple permutations of these matrices 
will produce small pivots with the usual pivoting strategies. Therefore, they are in 
some sense rare and relatively harmless. Based on these conditions, we propose a 
2-pass algorithm which is guaranteed to produce an LU-factorization of any given 
matrix with an nth pivot that is as small as A is singular. The extra work involved is 
usually just a few more backsolves and at worst one more factorization. A related 
theoretical question is how to permute the rows and columns of a singular matrix A 
so as to obtain LU-factorizations with unn = 0. We show that these permutations 
can be expressed in terms of the positions of the nonzero elements of the smallest 
singular vectors of A and are consistent with the conditions for producing small 
pivots of nearly singular matrices as these matrices tend to be exactly singular. 

The existence of a small pivot reveals a great deal about the null space of A. Such 
a factorization can be used to determine the rank of A and for determining the 
approximate left and right null vectors of A without inverse iterations [12], [13]. It 
can be used to compute the pseudo-inverse of A [18], to solve least squares problems 
[5], [19], [18] and to solve underdetermined linear systems [7]. Another important 
application is to computing deflated solutions and deflated decompositions of solutions 
of nearly singular linear systems [3], [13], [21] which arise in numerical continuation 
methods for solving nonlinear systems [2], [4], [14], [13], [15], [20], [22]. Many 
numerical methods have been proposed which are designed to exploit such LU-fac- 
torizations. Naturally, all of these methods depend on the ability of some procedures 
for producing such factorizations. Therefore, it is important to better understand 
both the theoretical questions of existence and the practical questions of computing 
such factorizations. 
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In Section 2, we motivate and outline the basic strategy used to find permutations 
P and Q such that there exist LU-factorizations for PAQ. In Section 3, we treat the 
exactly singular case and in Section 4 we treat the nonsingular case. We present the 
2-pass algorithm in Section 5. In Section 6, we use the conditions developed in 
Section 4 to explicitly construct for the matrix T an LU-factorization exhibiting a 
Un = 2- '1-2)* In Section 7, we show actual numerical computations with the matrix 
T and another example of Wilkinson's [23]. We conclude with a few remarks on 
possible extensions of this work in Section 8. 

2. Existence. Throughout this paper, we shall assume that the rank of the n by n 
matrix A is either n or n - 1. The basic observation which allows the permutations P 
and Q to be computed is the result of the following lemma. 

LEMMA 1. (a) If A is nonsingular and PA Q has an LU-factorization of the form 

(I) ~~~PAQ [L=][ lw 

then we can perturb the (n, n)th element of PA Q by E to make it singular. 
(b) If A is singular (with rank n - 1) and PA Q has an LU-factorization of the form 

(1) with E = 0, then we can perturb the (n, n)th element of PAQ to make A 
nonsingular. 

Proof. Multiplying the factors in (1) will reveal that E only enters into the 
expression for the (n, n)th element of PAQ and therefore changing - (to zero in (a) 
and to nonzero in (b)) will only affect the (n, n)th element of PA Q. Note that, for 
part (b), Ul is necessarily nonsingular because the rank of A is n - 1. 

Our strategy is based on the converse of Lemma 1, i.e., we want to find elements of 
A which can be perturbed alone to change the rank of A from either n to n - 1 or 
vice versa. For A nonsingular, we want to find elements which we can perturb by the 
smallest amount possible. We therefore make the following definition. 

Definition 2. Let C1 = (a,, jRank(A) can be changed (from n to n - 1 or vice 
versa) by perturbing al , alone). 

Once these elements are found, we can then use permutation matrices P and Q to 
move them to the (n, n)th position in PA Q. Finally, we have to construct the desired 
LU-factorization of the permuted matrix. For this last step, we need the following 
lemma. 

LEMMA 3. Let A, with rank > n - 1, be represented in the partitioned form: 

(2) A [S q 

where S is (n - 1) by (n - 1) and p and q are vectors. Then we can change the rank of 
A (from n to n - 1 or vice versa) by perturbing the element d if and only if S is 
nonsingular. 

Proof. By the cofactor expansion, the determinant of A, denoted by det(A), is 
equal to d times det(S) plus terms independent of d. The fact that we can change the 
rank of A from n to n - 1 or vice versa by changing d means that det(S) has to be 
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nonzero. On the other hand, if det(S) * 0, then we can change d to make the 
product d det(S) cancel the rest of the terms to make A singular. 

With this lemma, we can now show how to permute the rows and columns of A so 
that the resulting matrix has an LU-factorization. 

LEMMA 4. If P and Q permute an element of C1 to the (n, n)th position of PA Q, then 
we can construct permutation matrices P1 and Q1 which leave the (n, n)th position of 
PA Q unchanged, such that P1 PA QQ1 has an LU-factorization, with u,,,,, = 0 if A has 
rank n - 1. 

Proof. Write PA Q in the form of (2). Then by Lemma 3, S is nonsingular. 
Therefore, S has an LU-factorization PsSQs = LsUs, where Us has nonzero diago- 
nal elements. It can then be easily verified that, with Pi defined as Ps applied to the 
first n - 1 rows and Q1 defined as Qs applied to the first n - 1 columns, P1PAQQ 
has the following LU-factorization: 

(3) P PAQQ 1=[p I1 ][U [ j] 

where u, = d - pTUjL 'L-q and the permutations Ps and Qs are assumed to have 
been applied to p and q. Note that if A is exactly singular, then u, must be zero. 

Now it is natural to make the following definition. 
Definition 5. We say that a matrix has a generalized LU-factorization if an 

L U-factorization for it can be constructed by permuting only its first n - 1 rows and 
columns. 

Now we can state our basic theorem on the existence of an LU-factorization for 
PAQ. 

THEOREM 6. PAQ has a generalized LU-factorization if and only if P and Q 
permute an element of C1 to the (n, n)th position of PAQ. 

Proof. The if part is exactly Lemma 4. The only if part is exactly Lemma 1. 

3. The Singular Case. Let A be a singular matrix with a one-dimensional null 
space. In this section, we show how to find permutations P and Q such that PA Q has 
an LU-factorization with un,n 

= 0. Note that, by Lemma 4 and Theorem 6, we only 
have to find the elements of Cl. 

Definition 7. Let the Singular Value Decomposition (SVD) of A be A = XE YT, 
where X and Y are unitary matrices, and let the columns of X be {x, ..., X,) and the 
columns of Y be (y1, . . ., yn and : = Diagonal(a1, . . ., an). 

Note that if A is singular, then an = 0 and x,1 and yn are the left and right null 
vectors of A, respectively. 

We need a preliminary lemma. 

LEMMA 8. Let D = Diagonal(d1,..., dn -1, 0), and v and w be arbitrary vectors. 
Then the following identities hold. 

(a) det(I + vwT) = 1 + wTv, 

(b) det(D + vwT) = (H n, -J d)vnw . 

Proof. See Appendix. 
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The next lemma shows that Cl is related to the nonzero elements of the singular 
vectors corresponding to On. We shall use the notation (v)k to denote the kth 
element of the vector v. 

Definition 9. Define C2 = {a, Ij(xn),(yn), 0). 

LEMMA 10. If A is singular and has a one-dimensional null space, then Cl C2 and 
is nonempty. 

Proof. Consider perturbing the (i, j)th element of A by (. We have 

det( A ? bSe, efT) = det( X )detX t ? + ((XTej)(YTe )T)det( Y ) 

= det(X) ( )l )(X(n),(yn),det(Y), by Lemma 8, part (b) 

and thus det(A + (e1ej) * 0 if and only if (xn)i(yn)j * 0 since det(X) and det(Y) 
are nonzero. Since xn and yn have Euclidean norms equal to one, they are nontrivial 
and thus C2 is nonempty. 

We thus arrive at the main result of this section. 

THEOREM 1 1. If A has a one-dimensional null space, then PA Q has a Generalized 
LU-factorization with Un n = 0 if and only if P and Q permute an element in C2 to the 
(n, n) th position in PA Q. Moreover, there always exists at least one such factorization 
for any A with a one-dimensional null space. 

The set C2 can be viewed as a coloring of the elements of A, and a given pivoting 
strategy can be viewed as applying permutations on this coloring. It is well known 
that the complete pivoting strategy (CP) will always produce an LU-factorization 
with un,n = 0 but partial pivoting (PP) may not. The fact that CP will always work is 
consistent with (but not a result of) Theorem 1. The following theorem states the 
conditions under which PP will not work. 

THEOREM 12. The row (column) partial pivoting (PP) strategy will produce an 
LU-factorization with un,n = 0 only if C2 contains at least one element from the last 
column (row) of A. 

4. The Nonsingular Case. Assume that A is nonsingular. In this section, we show 
how to find permutations P and Q such that PAQ has a Generalized LU-factoriza- 
tion with a u n, that is as small as A is singular. First, we show that in this case C, is 
related to the nonzero elements of A-. 

Definition 13. Let M A-'. Define C3 (a,,1 m1 i1 * 0). 

LEMMA 14. If A is nonsingular, then Cl C3. Moreover, if a, J E C3, then 
det(A - m;'e efT) = 0. 

Proof. Consider perturbing the (i, j)th element of A by (. Thus 

det(A - be,ej) = det(A-')det(I - 8A-'e1ef) = det(A-l)(1 - SmJ,) 

by Lemma 8, from which the results follow easily. 
Next, we prove a result that relates the size of un,n to the size of perturbations 

needed to change the rank of A. 
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LEMMA 15. If det(A - -eleje) = 0 with - * 0, and P and Q permute the (i, j)th 
element of A to the (n, n)th element of PAQ, then PAQ has a Generalized LU-factori- 
zation with u,7n,n = E. 

Proof. Write PAQ in a partitioned form similar to (2), and A P(A - -elej )Q in 
a similar form except that d is replaced by d - e. By Lemma 4, A has a Generalized 
LU-factorization similar to (3) with Un,n = d - E + pTS-lq = 0. On the other hand, 
by a construction similar to that used in the proof of Lemma 4, it can be shown that 
PAQ has a Generalized LU-factorization with un, n = d + pTS-'q, and therefore 

Utz, ,7 
= ' 

Combining the last two lemmas, we have the following result: 

THEOREM 16. If A is nonsingular, then PAQ has a Generalized LU-factorization if 
and only if P and Q permute an element al j E C3 to the (n, n)th position of PAQ. 
Moreover, the resulting LU-factorization has u = m; . 

To produce a small pivot, we have to look for the large elements of A-'. 
Definition 17. Define IIAu L = max1, J a, J 1 I < i, j < n. 
It can easily be verified that 11 is a matrix norm, and satisfies the following 

norm-equivalence. 

LEMMA 18. 

(4) (a) (1 /n) ||A | < |A | L < IIA 110 . 

(5) (b) ||A |IOOKO1( A) <IIA- 1jjL1 nIJA I OK-1( A), 

where K0,(A) - IIAILJIA-'LjX. 

Proof. Straightforward. 
We are primarily interested in the upper bound in (b) in the above lemma. It 

shows that the largest element of A' in absolute value is O(K.(A)). 
The next definition defines the set of large elements of A-'. 
Definition 19. Let r > 1 be a real positive scalar. Define C4(r) {a, j , InJ * 0 

and Im; 11 < rnhIAIIOOK_<(A)). 

LEMMA 20. The size of C4( r) is a nondecreasing function of r and C4( 1) is nonempty. 

Proof. Follows directly from Lemma 18. 
We can characterize the LU-factorizations of A with small u, ? by the coloring C4. 

THEOREM 21. If A is nonsingular, then PA Q has a Generalized LU-factorization with 

IU,jfI <, rnIIAIIxKw'(A) if and only if P and Q permute an element of C4(r) to the 

(n, n)th position of PAQ. 

Proof. The if part follows from the if part of Theorem 16 and the fact that C4(r) is 
a subset of C3. The only if part follows from the result of Theorem 16 and the 
definition of C4(r). 

We can also characterize the LU-factorizations of A with small un,n by the singular 
vectors xn and yn corresponding to ot, 

Definition 22. Let r >? 1 be a real positive scalar. Define C5(r) -{a, jII(xn)1(yn)j 
1/rn), and A +_ ' I _ 1 x[T. 
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Note that A + is the pseudo-inverse of A with a, set to zero. 

LEMMA 23. The size of C5 (r) is a nondecreasing function of r and C5 (1) is nonempty. 

Proof. Since xn and yn have Euclidean norm equal to one, they satisfy llxnl, > 

1/ n and IIyn IK >? 1/ n, and thus there is at least one element in C5(1). 

THEOREM 24. If P and Q permute an element of C5(r) to the (n, n)th position of 
PA Q, then PA Q has a Generalized LU-factorization with ut, n satisfying the following 
bounds: 

(6) (a) |un,,l < unrn(I rn 2(-n/Jn_ 

(7) (b) lUn,nl - 1nrn(1 - rnan||A|L)', 

provided the quantities inside the brackets are positive. 

Proof. It can be shown that if the quantities inside the brackets are positive, then 
C5(r) is a subset of C3 and therefore the Generalized LU-factorizations exist by 
Theorem 16. The bounds are obtained by finding lower bounds for the absolute 
values of the elements of A' corresponding to elements in C5 (r). 

In the limit as an -> 0, C5(r) -> C2 for large enough r and the bounds in Theorem 
24 show that Unn - 0. Thus, the results of Theorem 24 reduce to that of the if part 
of Theorem 11. 

Theorem 21 is more general but requires knowledge about A-'. Theorem 24 is 
more useful when A is nearly singular because it is more likely that it will be 
applicable and because it only uses the singular vectors xn and yn. Unfortunately, the 
bounds are not tight in general. However, C5(r) can be used to indicate where the 
large elements of A- are located, since A = A + + a,7'yn x , the last term with in 
will tend to dominate the first as an -? 0. 

Most pivoting strategies in use are designed to control numerical stability and/or 
sparseness structures rather than to produce a small (or zero) pivot at the (n, n)th 
position of U. Given a pivoting strategy, the chance that it will produce a small un,n 

for a given matrix seems to depend on the size of the sets C4(r) and C5(r). Without 
any a priori knowledge about either the matrix or the pivoting strategy, the chance 
that a pivoting strategy will choose an element from C4(r) or C5(r) increases with 
the size of these sets. Conversely, if these sets contain only a few elements for 
relatively small values of r, then it is highly likely that a pivoting strategy will not 
produce a small un n. The following theorem states the conditions under which PP 
will not produce a small Un n. 

THEOREM 25. The row (column) partial pivoting (PP) strategy will produce an 
LU-factorization with I UnI n I< rnliAllI K -y (A) only if C4(r) contains at least one 
element from the last column (row) of A. 

For nearly singular matrices, the size of C5(r) depends on the number of elements 
with large absolute values in the approximate null vectors. Many of the known 
examples of nearly singular matrices for which the common pivoting strategies fail to 
produce small pivots have very sparse colorings corresponding to C4(r) and C5(r). 
These matrices are rare in the sense that their inverses and null vectors have very 
skew distributions of the size of their elements, namely, only a few elements of A' 
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are O(K(A)) and only a few elements of x, and yn are 0(1). Fortunately, they are 
relatively harmless since the common pivoting strategies have no problems with 
simple permutations of them. We shall see some examples in the next few sections. 

5. Algorithms. Based on the results of the last two sections, we can build an 
efficient 2-pass algorithm for computing an LU-factorization of a given matrix A 
with a small un,. The algorithm takes the following general form: 

Algorithm SP: 
1. Compute the LU-factorization of A by some conventional pivoting strategy (e.g. 

PP). 
2. Estimate the condition number of A [6], [8], [17]. 
3. If ju,j t is O(IIAIIK-1(A)) then done. 
4. Use a few steps of inverse iteration to find approximate singular vectors x, and 

Yn - 

5. Determine the set C5 (r) for some reasonable value of r. 
6. Repeat the following until found or C5 (r) is empty: 

a. Find the element in C5(r), denoted by ak ,, with the largest value of 

K(Xn1)k(Yn ),l. 
b. Compute Mink by solving for the kth column z of A' from Az = ek, and 

extracting the Ith component of z. 
c. If ImI,kl = O(IIAIj-K(A)) then set found to true else discard ak,/ from C5(r). 

7. If not found then compute A-' and find the largest element m, k. 

8. Find P and Q that will permute ak/ to the (n, n)th position of PAQ. 
9. Compute the LU-factorization of PAQ and force the pivoting strategy into not 

moving the (n, n)th element of PAQ (i.e. compute the Generalized LU-factorization 
of PAQ). 

Algorithm SP will usually succeed at Step 3, unless A is nearly singular and A' 
has a very skew distribution of the sizes of its elements. If the pivoting strategy fails 
to produce a small Un,n when A is nearly singular, then the set C5(r) will most likely 
contain an element with a large mlk so that the inner loop at Step 6 will converge 
after one or two iterations. If this step fails, then we have to compute A' which is 
more expensive but is guaranteed to work by Theorem 21. 

If we do not have to resort to computing A- ', then Algorithm SP will cost at worst 
two factorizations and a few backsolves at Steps 2,4 and 6.b. For a general dense n 
by n matrix, an LU-factorization costs n3/3 floating-point operations, a backsolve 
costs n2 operations and computing the inverse costs n3 operations. On the other 
hand, a full SVD costs about lOn3 operations [1], [9]. The storage overhead of 
Algorithm SP is an extra copy of the original A and a few vectors. Thus, in situations 
where determining the rank is important, but where a full SVD is not needed, 
Algorithm SP may be competitive. 

For problems where the same LU-factorization may be used many times (e.g., 
many right-hand sides), the extra cost may not be significant. Moreover, in situa- 
tions where a sequence of related A's have to be factored (e.g., in numerical 
continuation methods around singular points [2], [3], [11], [14], [15], [16], [20]), 
Algorithm SP has to be executed only once, as the permutations P and Q produced 
by it can be reused by the nearby problems. If A has special structures (e.g. banded), 
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then the permutations P and Q should be determined to preserve as much of the 
structures as possible. 

6. An Example. In this section, we shall demonstrate the effectiveness of Algo- 
rithm SP by applying it algebraically to the matrix T defined earlier to produce an 
LU-factorization with a unn = 2- 

Since T is upper triangular, it is easy to find its inverse: 

I 1 2 4 **2n- 
1 1 2 

1* 
T-l= 1 2 4 

* 1 2 

Thus we see that the largest element of T 'is in the (1, n )th position. Incidentally, 
this will also be discovered by computing the singular vectors xn and yn. Therefore, 
to produce a small un,n the (n, l)th element of A should be permuted to the (n, n)th 
position. We can do this by simply switching the first and the last column of A to 
produce: 

-l -l * * * -l 1 

-l 1 - ' -l 0 ] 

PAQ= 1q 

1 0 0 *0 0O 

The LU-factorization of the principal submatrix S of PA Q of dimension n - I 
can easily be found and by the construction outlined in the proof of Theorem 6, the 
following (unscaled) factorization of PAQ is obtained: 

1 2 0 *0 1 1 1 - 
PAQ= . 1 2 I . 1 -2 

1 . . 1 2 0 . 1 -2-(n 3) 

-L - * -l L0 0 2-(n-2) 

7. Numerical Experiments. The example in the last section was computed algebrai- 
cally. In this section, we present results of some numerical experiments with two 
well-known matrices that are nearly singular but for which the usual partial pivoting 
strategy fails to produce any small pivots. All computations were performed on a 
DEC-2060, with a 27-bit mantissa, corresponding to a relative machine precision of 
approximately .4 x 108. All LU-factorizations are computed by the LINPACK [8] 
routine SGECO, which equilibrates the matrix by scaling and uses the partial 
pivoting strategy. It also returns an estimate of the condition number in the 1,-norm. 
We note that we did not force the pivoting strategy of SGECO into not choosing the 
last row of PAQ as the pivoting row. 

The first example is the matrix T treated in the last section, with n = 20. Note 
that, from (8), we see that the size of the elements of the last column of T - 
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TABLE 7- 1: Computed un n of TQk as a function of k 

Reciprocal of the Estimated K(T) = 0.14305115E-06 

I k I un,n I 
+?-?------------------------ 

I 1 1 0.38146973E-05 I 
I 2 1 0.76293945E-05 I 
I 3 1 0.15258789E-04 I 
I 4 1 0.30517578E-04 I 
I 5 1 0.61035156E-04 I 
I 6 1 0.12207031E-03 I 
I 7 0 O.24414063E-03 I 

8 I 0.48828125E-03 I 
I 9 I 0.97656250E-03 I 
I 10 I 0.19531250E-02 I 
I 11 I 0.39062500E-02 I 

12 I 0.78125000E-02 I 
I 13 1 0.15625000E-01 I 
I 14 I 0.31250000E-01 I 
1 15 I 0.62500000E-01 
1 16 I 0.12500000E+00 I 
1 17 I 0.25000000E+00 I 
1 18 I 0.50000000E+O0 0 
I 19 I 0.10000000E+01 I 
1 20 I 0.10000000E+01 I 
-?--?-?--------------------- 

decreases rapidly from 2n -2 in the (1, n)th position to 1 in the (n, n)th position. To 
verify the results of Theorem 16, we computed a sequence of LU-factorizations of 
the matrices TQk, where Qk switches the k th column of T with the last column of T. 
In Table 7-1, we tabulate the value of the computed un,n as a function of k. By 
Theorem 16, the exact value for u,n should be equal to m-',. From the table, we see 
that the computed un 's are exactly as predicted by Theorem 16. 

The second example is a matrix W quoted by Wilkinson [23, p. 308 and p. 325] as 
an example of a nearly singular matrix for which PP does not produce any small 
pivot. The matrix W arises in the inverse iteration with the largest eigenvalue 
X = 10.7461942 of the following matrix: 

10 1 
1 1 

1 1 ~~~~~~0 
8 

W2 

0 

0 -2 1 

1 -10 
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TABLE 7-2: Computed pivots for Wand W 

Reciprocal of estimated ic(W) = 0.2817750E-08 

+----- ?----+ ??--- - -- - -- --_____+ ??___________ - -- - --+ ----?? - ----------+ 

I i IIPVT I u of W I u, iof W I (W-1) I 
-____-?____+??________________+??_________________+??_________________+ 

I 1 1 2 1 0.1OOOOOOOOE+01 I -0.207461940E+02 I -0.728823240E-12 I 
1 2 1 3 1 0.100000000E+01 I -0.174619420E+01 I -0.763179210E+07 I 
1 3 1 4 1 0.100000000E+01 I -0.217352030E+01 I -0.309896880E+07 I 
1 4 1 5 1 0.100000000E+01 1 -0.328611110E+01 1 -0.878578200E+06 1 
1 5 1 6 1 0.100000000E+01 1 -0.444188310E+01 1 -0.192355800E+06 1 
1 6 I 7 1 0.100000000E+01 1 -0.552106450E+01 1 -0.343797880E+05 1 
1 7 1 8 1 0.100000000E+01 I -0.656506970E+01 I -0.519713600E+04 I 
1 8 1 9 I 0.100000000E+01 I -0.759387300E+01 I -0.681101360E+03 I 
I 9 1 10 I 0.100000000E+01 I -0.861450910E+01 I -0.788075260E+02 I 
I 10 1 11 I 0.100000000E+01 I -0.963011100E+01 I -0.816456100E+01 I 
I 11 1 11 1 -0.136637790E+01 I -0.106423530E+02 I -0.765871480E+00 I 
1 12 1 12 1 -0.116522300E+02 I -0.116522300E+02 I -0.656426360E-01 I 
1 13 1 13 1 -0.126603740E+02 I -0.126603740E+02 I -0.517968900E-02 I 
1 14 1 14 1 -0.136672080E+02 I -0.136672080E+02 I -0.378685230E-03 I 
1 15 1 15 1 -0.146730260E+02 I -0.146730260E+02 I -0.257917020E-04 I 
1 16 1 16 1 -0.156780420E+02 I -0.156780420E+02 I -0.164422070E-05 I 
1 17 1 17 1 -0.166824110E+02 I -0.166824110E+02 I -0.985172480E-07 I 
1 18 1 18 1 -0.176862510E+02 I -0.176862510E+02 I -0.556824110E-08 I 

19 1 19 I -0.186896530E+02 I -0.186896530E+02 I -0.297839730E-09 I 
20 1 20 1 -0.196926890E+02 I -0.196444870E+02 I -0.151203090E-10 1 
21 I 21 1 -0.206954140E+02 I -0.977744340E-07 I -0.102276230E+08 1 

?____+_____+?_________________+?__________________+?_____ __- __----- + 

Since the matrix W is symmetric, the eigenvector corresponding to this eigenvalue is 
equal to the left and right singular vectors x. and yn of W. Wilkinson gave the 
computed eigenvector xn which turns out to have a very skew distribution of the size 
of its components, with (x,)I being the largest element. Thus, according to our 
theory, we should permute the (1, I)th element of W to the (n, n )th position in order 
to produce a small u nn. To accomplish this, we simply switched the first and last 
row followed by switchiing the first and last column of W. The resulting matrix, 
denoted by W, is given to SGECO. No interchanges were needed in the subsequent 
elimination. The pivots are tabulated in Table 7-2, together with those produced by 
SGECO for W and the last row of IV'. We see from the table that the last pivot un n 
is as small as the reciprocal of the estimated condition number. Moreover, un,n is 
exactly equal to the reciprocal of (WV')n ,n verifying Theorem 16. The array IPVT(i) 
listed is the pivot sequence used by SGECO for W. We see that there were 
interchanges up to the 10th step, after which there were no more interchanges. This 
is slightly different from the results reported by Wilkinson. 

8. Conclusion. In this paper, we have developed a theory for LU-factorizations 
with a small nth pivot. Moreover, we provided the basis for practical algorithms for 
computing such factorizations. We have demonstrated the effectiveness of both the 
theory and the algorithms by applying them to two well-known "counterexamples" 
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to the theme of LU-factorizations with small pivots. Although Algorithm SP is quite 
efficient and practical for nonpathological nearly singular matrices, we do not claim 
that it is the most efficient implementation of our theory. We only hope that it 
provides a basis for further development. The best algorithm is perhaps one that will 
be guaranteed to produce a small pivot in no more cost (in both time and space) than 
Gaussian Elimination, possibly using some adaptive pivoting strategies that esti- 
mates the colorings represented by the C,'s. Furthermore, for problems with special 
structures, it is important to work within the constraints imposed by the structures. 

9. Appendix. In this appendix, we shall prove Lemma 8. Part (a) of Lemma 8 is 
well known. We shall prove Part (b) only. We include the proof here because we 
have not been able to locate either the result or the proof in the literature. 

First, we need a result on the determinant of a rank-2 modification of the identity 
matrix. 

LEMMA 26. det(I + uvT + wz T) = 1 + VTU + Z TW + (VTU)(Z TW) (VTW)(Z TU). 

Proof. We shall get the determinant through the eigenvalues. The rank-2 modifica- 
tion has a range spanned by the vectors u and w and, in this subspace, can be 
represented by the matrix: 

R2 = ZTW 
Since the rank-2 modification only changes two of the eigenvalues of the identity 
matrix, the determinant of the rank-2 modification of the identity matrix can be 
easily expressed in terms of the eigenvalues A1 and A2 of R 2 as 

det(I + uVT + wzT) = (1 + AX)(1 + A2) = 1 + (A1 + A2) + /XA2. 

From the characteristic polynomial for R2, we obtain 

Al + A2 = VTu + zTw and A1A2 = (vTu)(zTw) - (vTw)(zTu), 

from which the lemma follows. 
Now we can prove Part (b) of Lemma 8. 
Proof (of Part (b) of Lemma 8). With DI Diagonal(d ,I , d?, 1, 1) and Io 

Diagonal(l,..., 1, O), we can write D + VWT as 

D + vwT = D(Io + (Dolv)wT) = Di(I+ (Do lv)wT- e,eT). 

The second term on the right-hand side is a rank-2 modification of the identity 
matrix, and the result of Part (b), Lemma 8 follows by applying the result of Lemma 
26. 

I acknowledge helpful discussions with Drs. Youcef Saad and Stanley Eisenstat on 
the results in this Appendix. 
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